The integration of OpenAI’s GPT-4 Turbo 128k model into Client Support Software’s CRM system marks a technical advancement in handling customer interactions. This model allows for the processing of longer call transcriptions, which is particularly useful for organizations that require detailed records for compliance and monitoring purposes.
For ISO call recording monitoring, the CRM’s ability to process and analyze lengthy call transcriptions in full helps businesses ensure that their customer service complies with ISO standards without having to manually review recordings.
In the realm of financial counseling, the CRM now aids in generating NFCC detailed notes from calls, which can be used for maintaining compliance and for reference in subsequent counseling sessions.
Calls can be analyzed to provide detailed and helpful feedback to counselors after they have completed a counseling call.
Housing counseling services, which often involve complex conversations, can benefit from the CRM’s summarization capabilities. This tool condenses long calls into concise summaries, thus streamlining the review process for counselors.
The GPT-4 Turbo model’s key attributes include a larger memory span, which gives it the ability to process much larger text summaries, up to around 1/2 million characters. This unlocks the ability to create a DocumentTemplate in the CMA with full customer history and utilize GPT to perform multiple kinds of previously unavailable analysis. The turbo version is much faster than the previous version of GPT-4, reducing wait times for analysis to complete and increasing productivity.
We are excited to see how you will use these new capabilities as we continue to enhance the tools available for you in order to provide outstanding financial counseling to consumers.
Excited to announce the latest round of updates and enhancements, which brings new features, important fixes, and other changes to ensure smooth and efficient functionality. Below is a comprehensive breakdown of the recent modifications.
Feature Additions:
New Reports and Columns:
Added Spinwheel Usage Report.
Added links to view Sent and Returned RPPS DMP records within the Client Credit page.
New Creditor column: Date Last ClientCredit Created added.
Added Last Clear Payment column to Client Balances report.
Added ‘Date Opened’ column to the LMA/Creditors tab.
New File and Format Support:
Support for new file types in ClientDocs (heic, heif) added.
Added ACH Return CSV file format for Seacoast Bank.
Additional Features:
New feature to show multiple matches message during the ClientCredit Automatch process.
Improved billerID Automatch tool for better handling with Chase and Bank of America.
Added CoApp emails to Client/Email Activity section.
Enhanced Call Queue with new dispositions and filters.
Added ‘Show num ClientTask Links’ filter to Task Management report.
Added CoApp and CoID columns in various views and reports.
Fixes:
Error Resolutions:
Fixed Manager Report error related to client’s timezone determination.
Fixed error in Custom Reports and Automatch BillerIDs.
Fixed issue with recomputation of $Totals variable.
Fixed errors related to ClientTask and CMAForm formatting.
Logic Corrections:
Closed Spinwheel accounts with a balance are not automatically marked as Charged Off.
Corrections in Spinwheel class, Creditor name formatting, and Spinwheel account status determination.
User Interface Adjustments:
Checkbox in ACH Batch is hidden when Routing Number is invalid.
Resolved issue with display of Balance information in Client/Creditors tab.
Updates:
Software Updates:
PHP updated to 8.2.11
htmldoc updated to 1.9.17
netpbm updated to 11.03.05
MySQL updated to 8.0.33
Smarty updated to 4.3.2
Logic Updates:
Updated Spinwheel and Equifax Credit Report import logic.
Updated Call Queue and Client/Creditors display and functionality.
Enhanced Manager Report layout and columns.
Other Updates:
Updated ClientSpinwheelID and Spinwheel API.
Updated CSP Stats section and various other fields and sections for improved performance.
Other Changes:
Functionality Enhancements:
Removal of certain system tasks and requirements for smoother operation.
Adjustment in Client/Creditors and Payment views.
Enhancements in Task Management and Manager Reports.
New logic for handling Closed Leads and Spinwheel leads.
Synchronization:
Sync with TotalCommon for various updates.
Util::getDurationIntervals() updated to accept more values.
Miscellaneous:
Added description to Client/Include in Payment Batch field.
Adjusted SMS message sending times according to the client’s timezone.
Enhanced support for SIP Endpoints and WebRTC phones.
Thank you for your continued support and feel free to reach out with any questions or concerns about the latest updates!
We are excited to announce a new feature for our CRM customers: Custom AI API Endpoints. This feature allows you to use your own AI models or open source alternatives to the ones provided by OpenAI, depending on your needs and preferences.
Custom Endpoints can help you save money on AI costs while enhancing your data privacy. You can run your own AI models on your own hardware, without sending any data to third-party services. For example, you can use the open source Whisper model to transcribe call recordings using the same API as OpenAI. Whisper is a large language model that can run on a consumer GPU with 11GB of RAM.
Large language models are powerful AI tools that can generate natural language texts for various purposes. They are trained on massive amounts of data and learn to capture the patterns and nuances of human language. As the size of these models increases, they can exhibit emergent capabilities that go beyond their original training objectives. For example, some large language models can answer questions, write summaries, generate code, and even create music or art.
However, running large language models requires a lot of computational resources, especially video RAM (VRAM). VRAM is the memory that is used by the GPU to process graphics and other tasks. The more VRAM a GPU has, the larger and more complex models it can run. For example, a 30 billion parameter model requires 24GB of VRAM, which is available in some high-end consumer GPUs. As of June 2023, recent models of this size are comparable to GPT-3.5, one of the most advanced models from OpenAI. By combining multiple GPUs, it is possible to run even larger models with more emergent capabilities.
Open source large language models are advancing at a rapid rate, thanks to the efforts of researchers and developers around the world. As our customer, you have the option of using OpenAI’s models or hosting your own open source models. As hardware capability inevitably improves and prices come down, you will be able to run more powerful and privately hosted models that can easily integrate with your existing customer data.
The future is bright and full of possibilities as we leverage these technologies in service of society. If you’re interested in exploring this option, please contact us for more details. We hope you enjoy this new feature and we look forward to hearing your feedback.
We are excited to announce a new feature for our Client Support Software: Gmail integration within the Client record. This feature allows you to view all the emails related to a client from your Google Workspace account without leaving the CMA. You can also filter out irrelevant or sensitive email addresses by using exclusion patterns. Here’s how it works:
To enable this feature, you need to have a Google Workspace Service level account with Domain Wide delegation. This allows our software to access your emails on behalf of your users. Please contact us so that we can set it up on your behalf.
After enabling the feature, you can go to any Client record in the CMA and the relevant Gmail messages associated with the Client email will be displayed in the Info tab, under the Email Activity section. You can click on any email summary to see the full text message in the CMA.
The Email Activity section is updated asynchronously, so there is no performance penalty when loading the Client record.
We hope this feature will help you improve your communication with your clients and streamline your workflow. If you have any questions or feedback, please contact us at support@clientsupportsoftware.com.
Following up on the addition of Call Log Sentiment Analysis, we’ve added the ability perform transcription analysis within Client Support Software’s CRM and OpenAI’s language models. This feature allows you to create and use AI prompts for Call Log Transcription Analysis, which can help you gain insights into your customer conversations and optimize your service delivery.
How can AI help you with Call Log transcription analysis?
Call Log transcription analysis is a process of extracting insights from the transcripts of phone calls. It can help you understand the needs, preferences, and feedback of your customers, as well as identify areas for improvement in your products or services. AI can help you with Call Log transcription analysis by automating the transcription of audio files, applying natural language processing techniques to analyze the content and sentiment of the conversations, and generating reports that summarize the key findings and trends. AI can also help you with Call Log transcription analysis by providing recommendations and suggestions based on the data, such as how to improve customer satisfaction, retention, and loyalty, or how to optimize your sales and marketing strategies.
AI prompts are questions or commands that you can use to interact with a large language model (LLM), such as OpenAI’s GPT and get relevant and useful responses. For example, you can use an AI prompt to ask an LLM to summarize the main points of a Call Log transcription, or to suggest actions or solutions based on the customer’s feedback.
By using Document Templates, you can create AI prompts that are tailored to your specific Call Log transcriptions and your desired outcomes. You can also use variables and placeholders to make your AI prompts dynamic and adaptable to different situations. For instance, you can use a variable to insert the customer’s name or previous communication history into your AI prompt, or you can use a placeholder to indicate where you want the LLM to fill in some information.
What are some examples of AI prompts for Call Log transcription analysis?
Here are some examples of AI prompts that you can use or modify for your Call Log transcription analysis:
In one sentence, describe what the customer wanted and how the agent resolved the issue.
Write a brief summary of the call, including the customer’s problem, the agent’s solution, and the customer’s satisfaction level.
How would you summarize this transcription for a manager who wants to know the main outcome of the call?
Analyze the sentiment of the customer and the agent during the call:
Using a scale from 1 (very negative) to 5 (very positive), rate the sentiment of the customer and the agent at different stages of the call.
Identify the emotions that the customer and the agent expressed or implied during the call, and explain how they affected the communication.
What was the overall tone of the call? Was it friendly, professional, angry, frustrated, etc.? How did it change over time?
Suggest improvements or best practices for the agent based on the Call Log transcription:
Based on this transcription, what are some things that the agent did well and what are some areas that they could improve on?
Give three specific feedback points for the agent, along with examples from the call and suggestions on how to implement them.
How could the agent have handled this call more efficiently or effectively? Provide some concrete tips or recommendations.
How can diarization be performed based on the conversational context?
Diarization is the process of identifying who is speaking when in a multi-speaker audio recording. Diarization can help you segment your Call Log transcriptions into speaker turns and assign labels or names to each speaker. This can make your transcriptions more readable and easier to analyze.
One way to perform diarization based on the conversational context is to use an LLM that can recognize speech patterns, cues, and features that indicate speaker changes. For example, an LLM can use contextual clues such as pronouns, names, roles, topics, etc., to identify speakers based on their content. A prompt can be used to ask the LLM to perform the diarization of the transcription. If there are more than two speakers, a prompt like “Perform diarization on the following phone conversation that may include speakers such as [IVR, Voicemail, Agent, Client]”.
Adding new Prompts
Under System Management/Document Templates, add a New Record, select Type = AI_PROMPT_CALLLOG
Enter the prompt using plain text and optional dynamic Smarty variables available within the CMA
Analyzing Call Log Transcriptions with the Prompts
A Call Log record can be viewed from within the Client record or from within the Call Log Detail report. In both cases, when viewing the individual transcription, the predefined prompts are available for selection. They will populate the prompt text area which can be further customized for a personalized analysis.
Once the desired prompt is written, submit the record, and analysis is performed. The resulting. analysis is now available to view either as a popup when hovering over the Call Log notes or within the Call Log record. The prompt that is used, is stored with the response so that the response can be understood within its context. For example:
We hope that this help your organization provide constructive feedback to assist counselors who in turn assist clients. Please contact us for implementation questions.
Many minor changes and enhancements have been made to the CMA during Q1. Details are available in the internal CMA Changelog.Β
The following is a highlight of changes:
π§ Improved check handling and money-matching magic, making your financial tasks a breeze!
π PHP 8.2 is here to stay, future-proofing for the next 2 years.
π§Ή Data cleanup just got smarter, keeping your information fresh and tidy.
π New dynamic filters for SQL Reports make your documents more versatile than ever.
β±οΈ Track your breaks alongside your sessions with enhanced Session Log Calendars.
π Dig deeper into client balances with new filter options.
π¨ Out with the old, in with the new Bootstrap Icons for a sleeker look!
π Task views now come with a handy Calendar view for a fresh perspective.
π Visualize your Task workflow like never before with our directed graph layout.
β³ Customize Imported Lead waiting times with ease.
π° Take control of extra funds allocation with our new customizable settings.
– add Setting::DISBURSEMENT_EXTRA_FUNDS_ALLOCATION_LIMIT to allow customization of the amount of extra funds that are automatically allocated when generating Disbursements
– add Setting::DISBURSEMENT_EXTRA_FUNDS_ALLOCATION_ALGORITHM to allow customization of the order in which extra funds are allocated if an account is not explicity set. Avaiable options are:
1=Lowest APR,
2=Highest APR,
3=Lowest Original Balance,
4=Highest Original Balance,
5=Lowest Payment,
6=Highest Payment.
π Transcribe Call Log recordings using OpenAI’s Whisper API.
π Call Log records with Transcriptions now display the sentiment of the conversation with top 3 emotional tones to save you time when analyzing calls!
We are happy to announce a new feature for Client Support Software’s CMA: Call Log Sentiment Analysis. This feature builds on yesterday’s addition of Call Log Transcription to provide sentiment analysis using OpenAI’s text-davinci-003 model. In this post, we will explain what sentiment analysis is and how it is useful to have in a CRM.
Sentiment analysis is the process of identifying and extracting the emotional tone and attitude of a speaker or writer from their words. It can help you understand how your customers feel about your products, services, or interactions with your agents. Sentiment analysis can also help measure customer satisfaction, loyalty, and retention.
With Call Log Sentiment Analysis, you can now automatically analyze the sentiment of your call transcripts using OpenAI’s text-davinci-003 model. This model is one of the most advanced natural language processing models available today. It can handle complex and nuanced language expressions and generate accurate and consistent sentiment scores.
Call Log Sentiment Analysis works by assigning a score between 1 and 5 to each call transcript. A score closer to 1 indicates a very negative sentiment, while a score closer to 5 indicates a very positive sentiment. In addition, the top three emotional tones are identified next to the sentiment score.
You can access Call Log Sentiment Analysis from the CMA Call Log Detail Report. You will see an emoji-coded display of your call transcript with the sentiment scores for the entire conversation. You can also filter your call logs by sentiment score using the “Sentiment” filter in your call log list.
Call Log Sentiment Analysis can help you improve your customer service and sales performance in many ways. Here are some examples:
You can identify unhappy or dissatisfied customers and take proactive actions to resolve their issues or offer them incentives.
You can identify happy or satisfied customers and ask them for referrals, testimonials, or reviews.
You can monitor the quality and effectiveness of your agents’ communication skills and provide them with feedback or training.
You can discover insights into your customers’ needs, preferences, pain points, or objections and use them to improve your products or services.
You can track trends and patterns in customer sentiment over time and across different segments or regions.
We hope you enjoy this new feature and find it useful for your business. We are always working on improving the CMA to provide you with the best tools for customer support and sales. If you have any questions or feedback about Call Log Sentiment Analysis or any other feature, please contact us.
Client Support Software has integrated OpenAI’s text-to-speech API known as Whisper in order to optionally transcribe call recordings for customers that use our PBX hosting product. This feature will increase productivity and benefit CMA users by allowing them to quickly review the transcription of a conversation and extract key insights.
Whisper is a state-of-the-art speech-to-text model that can transcribe audio files in any of the supported languages into text . It can also translate and transcribe audio files into English. Whisper has received immense praise from the developer community for its accuracy and speed.
With Whisper integration, CMA users can easily access the transcription of any call recording using the Call Log reports. They can search for keywords, filter by date, duration, caller ID, or extension, and export the transcripts as CSV files. They can also listen to the original audio file while reading the transcript.
This feature will help CMA users to:
Improve customer service by identifying pain points, feedback, and satisfaction levels from call recordings.
Enhance training and coaching by reviewing call transcripts and providing feedback to agents.
Save time and resources by avoiding manual transcription.
In order to enable this feature, your company should open an account with OpenAI to obtain an API key. Existing customers may contact us to enable this functionality. We hope you enjoy this new feature and we look forward to hearing your feedback.
There is a new System Setting: NSF_FEE_EXCLUDE_CREDITORIDS that allows listing CreditorIDs for which NSF Fees should not be charged.
When importing the ACH failures, if a Client has an OPEN account that is associated with one of the CreditorIDs specified in NSF_FEE_EXCLUDE_CREDITORIDS, the following message is displayed “An OPEN Creditor prevents NSF Fee” and no NSF Fee is generated.
We are excited to announce a new feature enhancement that will allow you to create custom SQL reports in our system. This feature will enable you to query data from various sources and generate reports that suit your specific needs.
What is a Custom SQL Report?
A custom SQL report is a report that you can create by writing your own SQL queries. SQL stands for Structured Query Language and it is a standard language for accessing and manipulating data in databases. By using SQL, you can select, filter, sort, group, and aggregate data from different tables and views.
A custom SQL report can be useful when you want to:
Analyze data that is not available in the predefined reports
Combine data from different sources or applications
Perform complex calculations or transformations on data
Customize the layout or format of the report
How to Create a Custom SQL Report?
To create a custom SQL report, follow these steps:
Go to System Management/Document Template Management
Select Type = SQL
Write your SQL query in the Query box. You can only use SELECT statements. Do not use INSERT, UPDATE, DELETE, or other commands that can modify data as they will generate an error.
Click Save
How to Access a Custom SQL Report?
To access a custom SQL report, follow these steps:
Go to the Navigation pane
Select the name of your saved your report under Custom Reports
Click on your report name
If your report has filters, enter values for them and click Filter
View your report on the screen or export it as a CSV file
How to Limit Access to a Custom SQL Report?
To limit access to a custom SQL report, follow these steps:
Go to System Management/Document Template Management
Select Type = SQL
Find your report and click Edit
In the Access Groups box, enter the permission groups that are able to view the report
Click Save
Only members of those groups will be able to see and run your report.
We hope this feature enhancement will help you create more powerful and customized reports in our system.
We are excited to announce that Client Support Software’s CMS for housing counseling agencies, has been approved by the U.S. Department of Housing and Urban Development (HUD) as a HUD certified Housing Counseling CMS, compatible with the Agency Reporting Module version 6 (ARMv6) specification.
This means that the CMS meets HUD’s standards for collecting, storing, and reporting data on housing counseling services provided by HUD-approved agencies. Agencies using Client Support Software’s CMS can easily transmit their data to HUD’s Housing Counseling System (HCS) using XML format, without any manual entry or conversion.
CMA is designed to help housing counselors deliver high-quality and efficient services to their clients. With Client Support Software, you can:
Manage client intake, assessment, action plan, follow-up, and outcome tracking
Generate customized reports for internal and external use
Automate reminders, notifications, and referrals
Integrate with third-party applications such as credit reports, messaging services, and online education platforms
Access it from any device with an internet connection
Client Support Software’s CMS is also affordable and flexible. You can choose from different pricing plans based on your agency size and needs. You can also customize the CMS to fit your agency’s workflow and preferences.
If you are interested in learning more about how our CMS can help your Housing Agency, please schedule a demo by clicking on the Schedule a Demo button on our website.
We look forward to helping you achieve your housing counseling goals with Client Support Software!
We are excited to announce a new feature enhancement for the CMA: Campaign Phone Tagging. This feature allows you to specify a phone number for each campaign you create in the CMA. A campaign tracks the source of Leads.
If you set a campaign phone, when a CallLog record is imported, the CMA will look up the most recent campaign whose phone matches the CallLog DID (Direct Inward Dialing). When the CallLog is linked with a Client, if the Client Campaign is empty, the Clientβs campaign is updated.
This feature will help you track and measure the performance of your campaigns more easily and accurately. You will be able to see which campaigns are generating more calls, leads, sales, or revenue. You will also be able to segment your clients by campaign and tailor your communication accordingly.
To use this feature, you need to create a new campaign or edit an existing one in the CMA. You will see a new field called Campaign Phone where you can enter a valid phone number that you own or have access to. You can also use a 10-digit long code phone number (10DLC).
The CallLog Detail report and the Campaign report have been updated to display new columns related to this feature. You can now see the Campaign Phone, CallLog DID, and Client Campaign fields in these reports.
We hope you enjoy this new feature enhancement and find it useful for your business goals. If you have any questions or feedback, please contact us.
There is a new Setting key: NSF_FEE_STATE_FIELD which allows specifying which field is used to determine NSF fees that are applied when importing an ACH Failure file. Either clientAddressOrigState (the contract state) or clientAddressState (the client’s current state) can be specified.
There is a new Company field that allows selection of the Default Bank Algorithm to use when determining which Bank payments should be linked with.
Default Bank Algorithm
Description
Default
The State Default Banks rule is ONLY applied if both the clientAddressOrigState and clientAddressState match. (If the Contract state matches the Client’s current address)
OriginalState
Apply rules based on clientAddressOrigState (the Contract Address State)
CurrentState
Apply rules based on clientAddressState (the Client’s current Address State)
Based on feedback, several small changes have been made to improve the Accounting experience. Many of the smaller changes are listed within the CMA internal Changelog.
Notable changes include:
The Client Payment and Disbursement tabs can be exported to a CSV file.
Filters have been added to the Disbursement tab for dates and to collapse fairshare. Collapsing fairshare displays gross, fairshare, and net columns for the primary Disbursement record.
Default view:
Collapsed FairShare view:
In addition, when a failed Disbursement is imported via a Check Return file or RPPS Return file and it is associated with a Cleared FairShare record, the system now automatically creates a Payment record of type Operating Account Credit in the amount of the Cleared FairShare. This allows the Client funds to be balanced and simplifies the process of dealing with this scenario.
ACH files now support batching multiple sub-accounts within the same Financial Institution (Bank) in one NACHA file. Sub Accounts can be linked with a Parent Bank under System Management/Banks.
The DMA ACH Batch can now include LMA Payments so that only one ACH file needs to be created. This is accomplished by setting the Company filter to Any and the Include LMA filter to Yes.
Support to mark Cleared Payments and Disbursements as Reconciled has been added. A Reconciled transaction is no longer editable through the CMA.
There is a new Setting key: RECONCILE_ACCOUNTING_TRANSACTIONS_AFTER_N_DAY which is used to specify the number of days after which a Cleared Payment or Disbursement should be marked as Reconciled by the CMA’s daily job. To disable this job, set the value of the Setting key to 0.
Filters and columns have been added to the Payment and Disbursement reports. An R appears prior to the Status column for Payments and Disbursements when that transaction has been marked as Reconciled.